brock

Tuesday, August 7, 2012

Semiconductor Basics Diode Theory


Semiconductor Basics


If Resistors are the most basic passive component in electrical or electronic circuits, then we have to consider the Signal Diode as being the most basic "Active" component. However, unlike a resistor, a diode does not behave linearly with respect to the applied voltage as it has an exponential I-V relationship and therefore can not be described simply by using Ohm's law as we do for resistors.
Diodes are basic unidirectional semiconductor devices that will only allow current to flow through them in one direction only, acting more like a one way electrical valve, (Forward Biased Condition). But, before we have a look at how signal or power diodes work we first need to understand the semiconductors basic construction and concept.
Diodes are made from a single piece of Semiconductor material which has a positive "P-region" at one end and a negative "N-region" at the other, and which has a resistivity value somewhere between that of a conductor and an insulator. But what is a "Semiconductor" material?, firstly let's look at what makes something either a Conductor or an Insulator.

Resistivity

The electrical Resistance of an electrical or electronic component or device is generally defined as being the ratio of the voltage difference across it to the current flowing through it, basic Ohm´s Lawprincipals. The problem with using resistance as a measurement is that it depends very much on the physical size of the material being measured as well as the material out of which it is made. For example, If we were to increase the length of the material (making it longer) its resistance would also increase.
Likewise, if we increased its diameter (making it fatter) its resistance would then decrease. So we want to be able to define the material in such a way as to indicate its ability to either conduct or oppose the flow of electrical current through it no matter what its size or shape happens to be. The quantity that is used to indicate this specific resistance is called Resistivity and is given the Greek symbol of ρ, (Rho). Resistivity is measured in Ohm-metres, ( Ω-m ) and is the inverse to conductivity.
If the resistivity of various materials is compared, they can be classified into three main groups,ConductorsInsulators and Semi-conductors as shown below.

Resistivity Chart

Resistivity Chart   
Notice also that there is a very small margin between the resistivity of the conductors such as silver and gold, compared to a much larger margin for the resistivity of the insulators between glass and quartz.
Note that the resistivity of all the materials at any one time also depends upon their temperature.

Conductors

From above we now know that Conductors are materials that have a low value of resistivity allowing them to easily pass an electrical current due to there being plenty of free electrons floating about within their basic atom structure. When a positive voltage potential is applied to the material these "free electrons" leave their parent atom and travel together through the material forming an electron drift.
Examples of good conductors are generally metals such as Copper, Aluminium, Silver or non metals such as Carbon because these materials have very few electrons in their outer "Valence Shell" or ring, resulting in them being easily knocked out of the atom's orbit. This allows them to flow freely through the material until they join up with other atoms, producing a "Domino Effect" through the material thereby creating an electrical current. Copper and Aluminium is the main conductor used in electrical cables as shown.
electrical cable
An Electrical Cable uses
Conductors and Insulators
Generally speaking, most metals are good conductors of electricity, as they have very small resistance values, usually in the region of micro-ohms per metre with the resistivity of conductors increasing with temperature because metals are also generally good conductors of heat.

Insulators

Insulators on the other hand are the exact opposite of conductors. They are made of materials, generally non-metals, that have very few or no "free electrons" floating about within their basic atom structure because the electrons in the outer valence shell are strongly attracted by the positively charged inner nucleus. So if a potential voltage is applied to the material no current will flow as there are no electrons to move and which gives these materials their insulating properties.
Insulators also have very high resistances, millions of ohms per metre, and are generally not affected by normal temperature changes (although at very high temperatures wood becomes charcoal and changes from an insulator to a conductor). Examples of good insulators are marble, fused quartz, p.v.c. plastics, rubber etc.
Insulators play a very important role within electrical and electronic circuits, because without them electrical circuits would short together and not work. For example, insulators made of glass or porcelain are used for insulating and supporting overhead transmission cables while epoxy-glass resin materials are used to make printed circuit boards, PCB's etc. while PVC is used to insulate electrical cables as shown.

Semiconductor Basics

Semiconductors materials such as silicon (Si), germanium (Ge) and gallium arsenide (GaAs), have electrical properties somewhere in the middle, between those of a "conductor" and an "insulator". They are not good conductors nor good insulators (hence their name "semi"-conductors). They have very few "fee electrons" because their atoms are closely grouped together in a crystalline pattern called a "crystal lattice". However, their ability to conduct electricity can be greatly improved by adding certain "impurities" to this crystalline structure thereby, producing more free electrons than holes or vice versa.
silicon semiconductor
Silicon Semiconductor
By controlling the amount of impurities added to the semiconductor material it is possible to control its conductivity. These impurities are called donors or acceptors depending on whether they produce electrons or holes respectively. This process of adding impurity atoms to semiconductor atoms (the order of 1 impurity atom per 10 million (or more) atoms of the semiconductor) is called Doping.
The most commonly used semiconductor basics material by far issilicon. Silicon has four valence electrons in its outermost shell which it shares with its neighbouring silicon atoms to form full orbital's of eight electrons. The structure of the bond between the two silicon atoms is such that each atom shares one electron with its neighbour making the bond very stable.
As there are very few free electrons available to move around the silicon crystal, crystals of pure silicon (or germanium) are therefore good insulators, or at the very least very high value resistors.
Silicon atoms are arranged in a definite symmetrical pattern making them a crystalline solid structure. A crystal of pure silica (silicon dioxide or glass) is generally said to be an intrinsic crystal (it has no impurities) and therefore has no free electrons.
But simply connecting a silicon crystal to a battery supply is not enough to extract an electric current from it. To do that we need to create a "positive" and a "negative" pole within the silicon allowing electrons and therefore electric current to flow out of the silicon. These poles are created by doping the silicon with certain impurities.

A Silicon Atom Structure

Silicon Atom
The diagram above shows the structure and lattice of a 'normal' pure crystal of Silicon.

N-type Semiconductor Basics

In order for our silicon crystal to conduct electricity, we need to introduce an impurity atom such as Arsenic, Antimony or Phosphorus into the crystalline structure making it extrinsic (impurities are added). These atoms have five outer electrons in their outermost orbital to share with neighbouring atoms and are commonly called "Pentavalent" impurities.
This allows four out of the five orbital electrons to bond with its neighbouring silicon atoms leaving one "free electron" to become mobile when an electrical voltage is applied (electron flow). As each impurity atom "donates" one electron, pentavalent atoms are generally known as "donors".
Antimony (symbol Sb) or Phosphorus (symbol P), are frequently used as a pentavalent additive to the silicon as they have 51 electrons arranged in five shells around their nucleus with the outermost orbital having five electrons. The resulting semiconductor basics material has an excess of current-carrying electrons, each with a negative charge, and is therefore referred to as an "N-type" material with the electrons called "Majority Carriers" while the resulting holes are called "Minority Carriers".
When stimulated by an external power source, the electrons freed from the silicon atoms by this stimulation are quickly replaced by the free electrons available from the doped Antimony atoms. But this action still leaves an extra electron (the freed electron) floating around the doped crystal making it negatively charged. Then a semiconductor material is classed as N-type when its donor density is greater than its acceptor density, in other words, it has more electrons than holes thereby creating a negative pole as shown.

Antimony Atom and Doping

Antimony Atom
The diagram above shows the structure and lattice of the donor impurity atom Antimony.

P-Type Semiconductor Basics

If we go the other way, and introduce a "Trivalent" (3-electron) impurity into the crystalline structure, such as Aluminium, Boron or Indium, which have only three valence electrons available in their outermost orbital, the fourth closed bond cannot be formed. Therefore, a complete connection is not possible, giving the semiconductor material an abundance of positively charged carriers known as "holes" in the structure of the crystal where electrons are effectively missing.
As there is now a hole in the silicon crystal, a neighbouring electron is attracted to it and will try to move into the hole to fill it. However, the electron filling the hole leaves another hole behind it as it moves. This in turn attracts another electron which in turn creates another hole behind it, and so forth giving the appearance that the holes are moving as a positive charge through the crystal structure (conventional current flow). This movement of holes results in a shortage of electrons in the silicon turning the entire doped crystal into a positive pole. As each impurity atom generates a hole, trivalent impurities are generally known as "Acceptors" as they are continually "accepting" extra or free electrons.
Boron (symbol B) is commonly used as a trivalent additive as it has only five electrons arranged in three shells around its nucleus with the outermost orbital having only three electrons. The doping of Boron atoms causes conduction to consist mainly of positive charge carriers resulting in a "P-type" material with the positive holes being called "Majority Carriers" while the free electrons are called "Minority Carriers". Then a semiconductor basics material is classed as P-type when its acceptor density is greater than its donor density. Therefore, a P-type semiconductor has more holes than electrons.

Boron Atom and Doping

Boron Atom
The diagram above shows the structure and lattice of the acceptor impurity atom Boron.

Semiconductor Basics Summary

N-type (e.g. add Antimony)

These are materials which have Pentavalent impurity atoms (Donors) added and conduct by "electron" movement and are called, N-type Semiconductors.
In these types of materials are:
  • 1. The Donors are positively charged.
  •  
  • 2. There are a large number of free electrons.
  •  
  • 3. A small number of holes in relation to the number of free electrons.
  •  
  • 4. Doping gives:
    •  
    •   positively charged donors.
    •  
    •   negatively charged free electrons.
  •  
  • 5. Supply of energy gives:
    •  
    •   negatively charged free electrons.
    •  
    •   positively charged holes.

P-type (e.g. add Boron)

These are materials which have Trivalent impurity atoms (Acceptors) added and conduct by "hole" movement and are called, P-type Semiconductors.
In these types of materials are:
  • 1. The Acceptors are negatively charged.
  •  
  • 2. There are a large number of holes.
  •  
  • 3. A small number of free electrons in relation to the number of holes.
  •  
  • 4. Doping gives:
    •  
    •   negatively charged acceptors.
    •  
    •   positively charged holes.
  •  
  • 5. Supply of energy gives:
    •  
    •   positively charged holes.
    •  
    •   negatively charged free electrons.
and both P and N-types as a whole, are electrically neutral on their own.
Antimony (Sb) and Boron (B) are two of the most commony used doping agents as they are more feely available compared to other types of materials. They are also classed as "metalloids". However, the periodic table groups together a number of other different chemical elements all with either three, or five electrons in their outermost orbital shell making them suitable as a doping material.
These other chemical elements can also be used as doping agents to a base material of either Silicon (S) or Germanium (Ge) to produce different types of basic semiconductor materials for use in electronic semiconductor components, microprocessor and solar cell applications. These additional semiconductor materials are given below.

Periodic Table of Semiconductors

Elements Group 13Elements Group 14Elements Group 15
3-Electrons in Outer Shell
(Positively Charged)
4-Electrons in Outer Shell
(Neutrally Charged)
5-Electrons in Outer Shell
(Negatively Charged)
(5)
Boron  ( B )
(6)
Carbon  ( C )
(13)
Aluminium  ( Al )
(14)
Silicon  ( Si )
(15)
Phosphorus  ( P )
(31)
Gallium  ( Ga )
(32)
Germanium  ( Ge )
(33)
Arsenic  ( As )
(51)
Antimony  ( Sb )
In the next tutorial about semiconductors and diodes, we will look at joining the two semiconductor basics materials, the P-type and the N-type materials to form a PN Junction which can be used to produce diodes.

The PN junction

In the previous tutorial we saw how to make an N-type semiconductor material by doping it with Antimony and also how to make a P-type semiconductor material by doping that with Boron. This is all well and good, but these semiconductor N and P-type materials do very little on their own as they are electrically neutral, but when we join (or fuse) them together these two materials behave in a very different way producing what is generally known as a PN Junction.
When the N and P-type semiconductor materials are first joined together a very large density gradient exists between both sides of the junction so some of the free electrons from the donor impurity atoms begin to migrate across this newly formed junction to fill up the holes in the P-type material producing negative ions.
However, because the electrons have moved across the junction from the N-type silicon to the P-type silicon, they leave behind positively charged donor ions ( ND ) on the negative side and now the holes from the acceptor impurity migrate across the junction in the opposite direction into the region where there are large numbers of free electrons. As a result, the charge density of the P-type along the junction is filled with negatively charged acceptor ions ( NA ), and the charge density of the N-type along the junction becomes positive. This charge transfer of electrons and holes across the junction is known asdiffusion.
This process continues back and forth until the number of electrons which have crossed the junction have a large enough electrical charge to repel or prevent any more charge carriers from crossing over the junction. Eventually a state of equilibrium (electrically neutral situation) will occur producing a "potential barrier" zone around the area of the junction as the donor atoms repel the holes and the acceptor atoms repel the electrons.
Since no free charge carriers can rest in a position where there is a potential barrier, the regions on either sides of the junction no become completely depleted of any more free carriers in comparison to the N and P type materials futher away from the junction. This area around the junction is now called theDepletion Layer.

The PN junction

Semiconductor PN junction

The total charge on each side of the junction must be equal and opposite to maintain a neutral charge condition around the junction. If the depletion layer region has a distance D, it therefore must therefore penetrate into the silicon by a distance of Dp for the positive side, and a distance of Dn for the negative side giving a relationship between the two of   Dp.NA = Dn.ND  in order to maintain charge neutrality also called equilibrium.

PN junction Distance

Semiconductor PN junction distance
As the N-type material has lost electrons and the P-type has lost holes, the N-type material has become positive with respect to the P-type. Then the presence of impurity ions on both sides of the junction cause an electric field to be established across this region with the N-side at a positive voltage relative to the P-side. The problem now is that a free charge requires some extra energy to overcome the barrier that now exists for it to be able to cross the depletion region junction.

This electric field created by the diffusion process has created a "built-in potential difference" across the junction with an open-circuit (zero bias) potential of:
PN junction potential
Where: Eo is the zero bias junction voltage, VT the thermal voltage of 26mV at room temperature, NDand NA are the impurity concentrations and ni is the intrinsic concentration.
A suitable positive voltage (forward bias) applied between the two ends of the PN junction can supply the free electrons and holes with the extra energy. The external voltage required to overcome this potential barrier that now exists is very much dependent upon the type of semiconductor material used and its actual temperature. Typically at room temperature the voltage across the depletion layer for silicon is about 0.6 - 0.7 volts and for germanium is about 0.3 - 0.35 volts. This potential barrier will always exist even if the device is not connected to any external power source.
The significance of this built-in potential across the junction, is that it opposes both the flow of holes and electrons across the junction and is why it is called the potential barrier. In practice, a PN junction is formed within a single crystal of material rather than just simply joining or fusing together two separate pieces. Electrical contacts are also fused onto either side of the crystal to enable an electrical connection to be made to an external circuit. Then the resulting device that has been made is called aPN junction Diode or Signal Diode.
In the next tutorial about the PN junction, we will look at one of the most interesting applications of thePN junction is its use in circuits as a diode. By adding connections to each end of the P-type and the N-type materials we can produce a two terminal device called a PN Junction Diode which can be biased by an external voltage to either block or allow the flow of current through it.

The Junction Diode

The effect described in the previous tutorial is achieved without any external voltage being applied to the actual PN junction resulting in the junction being in a state of equilibrium. However, if we were to make electrical connections at the ends of both the N-type and the P-type materials and then connect them to a battery source, an additional energy source now exists to overcome the barrier resulting in free charges being able to cross the depletion region from one side to the other. The behaviour of the PN junction with regards to the potential barrier width produces an asymmetrical conducting two terminal device, better known as the Junction Diode.
A diode is one of the simplest semiconductor devices, which has the characteristic of passing current in one direction only. However, unlike a resistor, a diode does not behave linearly with respect to the applied voltage as the diode has an exponential I-V relationship and therefore we can not described its operation by simply using an equation such as Ohm's law.
If a suitable positive voltage (forward bias) is applied between the two ends of the PN junction, it can supply free electrons and holes with the extra energy they require to cross the junction as the width of the depletion layer around the PN junction is decreased. By applying a negative voltage (reverse bias) results in the free charges being pulled away from the junction resulting in the depletion layer width being increased. This has the effect of increasing or decreasing the effective resistance of the junction itself allowing or blocking current flow through the diode.
Then the depletion layer widens with an increase in the application of a reverse voltage and narrows with an increase in the application of a forward voltage. This is due to the differences in the electrical properties on the two sides of the PN junction resulting in physical changes taking place. One of the results produces rectification as seen in the PN junction diodes static I-V (current-voltage) characteristics. Rectification is shown by an asymmetrical current flow when the polarity of bias voltage is altered as shown below.

Junction Diode Symbol and Static I-V Characteristics.

PN junction Diode and Static Characteristics

But before we can use the PN junction as a practical device or as a rectifying device we need to firstlybias the junction, ie connect a voltage potential across it. On the voltage axis above, "Reverse Bias" refers to an external voltage potential which increases the potential barrier. An external voltage which decreases the potential barrier is said to act in the "Forward Bias" direction.
There are two operating regions and three possible "biasing" conditions for the standard Junction Diode and these are:
  • 1. Zero Bias - No external voltage potential is applied to the PN-junction.

  • 2. Reverse Bias - The voltage potential is connected negative, (-ve) to the P-type material
          and positive, (+ve) to the N-type material across the diode which has the effect of
          Increasing the PN-junction width.

  • 3. Forward Bias - The voltage potential is connected positive, (+ve) to the P-type material and
          negative, (-ve) to the N-type material across the diode which has the effect of Decreasing the
          PN-junction width.

Zero Biased Junction Diode

When a diode is connected in a Zero Bias condition, no external potential energy is applied to the PN junction. However if the diodes terminals are shorted together, a few holes (majority carriers) in the P-type material with enough energy to overcome the potential barrier will move across the junction against this barrier potential. This is known as the "Forward Current" and is referenced as IF
Likewise, holes generated in the N-type material (minority carriers), find this situation favourable and move across the junction in the opposite direction. This is known as the "Reverse Current" and is referenced as IR. This transfer of electrons and holes back and forth across the PN junction is known as diffusion, as shown below.

Zero Biased Junction Diode

PN-junction Zero Biased Condition

The potential barrier that now exists discourages the diffusion of any more majority carriers across the junction. However, the potential barrier helps minority carriers (few free electrons in the P-region and few holes in the N-region) to drift across the junction. Then an "Equilibrium" or balance will be established when the majority carriers are equal and both moving in opposite directions, so that the net result is zero current flowing in the circuit. When this occurs the junction is said to be in a state of "Dynamic Equilibrium".
The minority carriers are constantly generated due to thermal energy so this state of equilibrium can be broken by raising the temperature of the PN junction causing an increase in the generation of minority carriers, thereby resulting in an increase in leakage current but an electric current cannot flow since no circuit has been connected to the PN junction.

Reverse Biased Junction Diode

When a diode is connected in a Reverse Bias condition, a positive voltage is applied to the N-type material and a negative voltage is applied to the P-type material. The positive voltage applied to the N-type material attracts electrons towards the positive electrode and away from the junction, while the holes in the P-type end are also attracted away from the junction towards the negative electrode.
The net result is that the depletion layer grows wider due to a lack of electrons and holes and presents a high impedance path, almost an insulator. The result is that a high potential barrier is created thus preventing current from flowing through the semiconductor material.

Reverse Biased Junction Diode showing an Increase in the Depletion Layer

PN junction Reverse Biased Condition
This condition represents a high resistance value to the PN junction and practically zero current flows through the junction diode with an increase in bias voltage. However, a very small leakage current does flow through the junction which can be measured in microamperes, (μA). One final point, if the reverse bias voltage Vr applied to the diode is increased to a sufficiently high enough value, it will cause the PN junction to overheat and fail due to the avalanche effect around the junction. This may cause the diode to become shorted and will result in the flow of maximum circuit current, and this shown as a step downward slope in the reverse static characteristics curve below.

Reverse Characteristics Curve for a Junction Diode

Reverse Characteristics Curves of a Junction Diode
Sometimes this avalanche effect has practical applications in voltage stabilising circuits where a series limiting resistor is used with the diode to limit this reverse breakdown current to a preset maximum value thereby producing a fixed voltage output across the diode. These types of diodes are commonly known as Zener Diodes and are discussed in a later tutorial.

Forward Biased Junction Diode

When a diode is connected in a Forward Bias condition, a negative voltage is applied to the N-type material and a positive voltage is applied to the P-type material. If this external voltage becomes greater than the value of the potential barrier, approx. 0.7 volts for silicon and 0.3 volts for germanium, the potential barriers opposition will be overcome and current will start to flow.
This is because the negative voltage pushes or repels electrons towards the junction giving them the energy to cross over and combine with the holes being pushed in the opposite direction towards the junction by the positive voltage. This results in a characteristics curve of zero current flowing up to this voltage point, called the "knee" on the static curves and then a high current flow through the diode with little increase in the external voltage as shown below.

Forward Characteristics Curve for a Junction Diode

Forward Characteristics Curves of a Junction Diode
The application of a forward biasing voltage on the junction diode results in the depletion layer becoming very thin and narrow which represents a low impedance path through the junction thereby allowing high currents to flow. The point at which this sudden increase in current takes place is represented on the static I-V characteristics curve above as the "knee" point.

Forward Biased Junction Diode showing a Reduction in the Depletion Layer

PN-junction Forward Biased Condition
This condition represents the low resistance path through the PN junction allowing very large currents to flow through the diode with only a small increase in bias voltage. The actual potential difference across the junction or diode is kept constant by the action of the depletion layer at approximately 0.3v for germanium and approximately 0.7v for silicon junction diodes.
Since the diode can conduct "infinite" current above this knee point as it effectively becomes a short circuit, therefore resistors are used in series with the diode to limit its current flow. Exceeding its maximum forward current specification causes the device to dissipate more power in the form of heat than it was designed for resulting in a very quick failure of the device.

Junction Diode Summary

The PN junction region of a Junction Diode has the following important characteristics:
  • 1). Semiconductors contain two types of mobile charge carriers, Holes and Electrons.
  •  
  • 2). The holes are positively charged while the electrons negatively charged.
  •  
  • 3). A semiconductor may be doped with donor impurities such as Antimony (N-type doping), so that it contains mobile charges which are primarily electrons.
  •  
  • 4). A semiconductor may be doped with acceptor impurities such as Boron (P-type doping), so that it contains mobile charges which are mainly holes.
  •  
  • 5). The junction region itself has no charge carriers and is known as the depletion region.
  •  
  • 6). The junction (depletion) region has a physical thickness that varies with the applied voltage.
  •  
  • 7).When a diode is Zero Biased no external energy source is applied and a natural Potential Barrier is developed across a depletion layer which is approximately 0.5 to 0.7v for silicon diodes and approximately 0.3 of a volt for germanium diodes.
  •  
  • 8). When a junction diode is Forward Biased the thickness of the depletion region reduces and the diode acts like a short circuit allowing full current to flow.
  •  
  • 9). When a junction diode is Reverse Biased the thickness of the depletion region increases and the diode acts like an open circuit blocking any current flow, (only a very small leakage current).
In the next tutorial about diodes, we will look at the small signal diode sometimes called a switching diode that are used in general electronic circuits. A signal diode is designed for low-voltage or high frequency signal applications such as in radio or digital switching circuits as opposed to the high-current mains rectification diodes in which silicon diodes are usually used, and examine the Signal Diode static current-voltage characteristics curve and parameters.

The Signal Diode

The semiconductor Signal Diode is a small non-linear semiconductor devices generally used in electronic circuits, where small currents or high frequencies are involved such as in radio, television and digital logic circuits. The signal diode which is also sometimes known by its older name of thePoint Contact Diode or the Glass Passivated Diode, are physically very small in size compared to their larger Power Diode cousins.
Generally, the PN junction of a small signal diode is encapsulated in glass to protect the PN junction, and usually have a red or black band at one end of their body to help identify which end is the cathode terminal. The most widely used of all the glass encapsulated signal diodes is the very common 1N4148and its equivalent 1N914 signal diode.
Small signal and switching diodes have much lower power and current ratings, around 150mA, 500mW maximum compared to rectifier diodes, but they can function better in high frequency applications or in clipping and switching applications that deal with short-duration pulse waveforms.
The characteristics of a signal point contact diode are different for both germanium and silicon types and are given as:
  • 1. Germanium Signal Diodes - These have a low reverse resistance value giving a lower forward volt drop across the junction, typically only about 0.2-0.3v, but have a higher forward resistance value because of their small junction area.
  •  
  • 2. Silicon Signal Diodes - These have a very high value of reverse resistance and give a forward volt drop of about 0.6-0.7v across the junction. They have fairly low values of forward resistance giving them high peak values of forward current and reverse voltage.
The electronic symbol given for any type of diode is that of an arrow with a bar or line at its end and this is illustrated below along with the Steady State V-I Characteristics Curve.

Silicon Diode V-I Characteristic Curve

Signal Diode V-I Curve
The arrow points in the direction of conventional current flow through the diode meaning that the diode will only conduct if a positive supply is connected to the Anode (a) terminal and a negative supply is connected to the Cathode (k) terminal thus only allowing current to flow through it in one direction only, acting more like a one way electrical valve, (Forward Biased Condition). However, we know from the previous tutorial that if we connect the external energy source in the other direction the diode will block any current flowing through it and instead will act like an open switch, (Reversed Biased Condition) as shown below.

Forward and Reversed Biased Diode

Forward and Reversed Biased Diode
Then we can say that an ideal small signal diode conducts current in one direction (forward-conducting) and blocks current in the other direction (reverse-blocking). Signal Diodes are used in a wide variety of applications such as a switch in rectifiers, limiters, snubbers or in wave-shaping circuits.

Signal Diode Parameters

Signal Diodes are manufactured in a range of voltage and current ratings and care must be taken when choosing a diode for a certain application. There are a bewildering array of static characteristics associated with the humble signal diode but the more important ones are.

1. Maximum Forward Current

The Maximum Forward Current (IF(max)) is as its name implies the maximum forward current allowed to flow through the device. When the diode is conducting in the forward bias condition, it has a very small "ON" resistance across the PN junction and therefore, power is dissipated across this junction (Ohm´s Law) in the form of heat. Then, exceeding its (IF(max)) value will cause more heat to be generated across the junction and the diode will fail due to thermal overload, usually with destructive consequences. When operating diodes around their maximum current ratings it is always best to provide additional cooling to dissipate the heat produced by the diode.
For example, our small 1N4148 signal diode has a maximum current rating of about 150mA with a power dissipation of 500mW at 25oC. Then a resistor must be used in series with the diode to limit the forward current, (IF(max)) through it to below this value.

2. Peak Inverse Voltage

The Peak Inverse Voltage (PIV) or Maximum Reverse Voltage (VR(max)), is the maximum allowableReverse operating voltage that can be applied across the diode without reverse breakdown and damage occurring to the device. This rating therefore, is usually less than the "avalanche breakdown" level on the reverse bias characteristic curve. Typical values of VR(max) range from a few volts to thousands of volts and must be considered when replacing a diode.
The peak inverse voltage is an important parameter and is mainly used for rectifying diodes in AC rectifier circuits with reference to the amplitude of the voltage were the sinusoidal waveform changes from a positive to a negative value on each and every cycle.

3. Total Power Dissipation

Signal diodes have a Total Power Dissipation, (PD(max)) rating. This rating is the maximum possible power dissipation of the diode when it is forward biased (conducting). When current flows through the signal diode the biasing of the PN junction is not perfect and offers some resistance to the flow of current resulting in power being dissipated (lost) in the diode in the form of heat.
As small signal diodes are nonlinear devices the resistance of the PN junction is not constant, it is a dynamic property then we cannot use Ohms Law to define the power in terms of current and resistance or voltage and resistance as we can for resistors. Then to find the power that will be dissipated by the diode we must multiply the voltage drop across it times the current flowing through it: PD = VxI

4. Maximum Operating Temperature

The Maximum Operating Temperature actually relates to the Junction Temperature (TJ) of the diode and is related to maximum power dissipation. It is the maximum temperature allowable before the structure of the diode deteriorates and is expressed in units of degrees centigrade per Watt, ( oC/W ).
This value is linked closely to the maximum forward current of the device so that at this value the temperature of the junction is not exceeded. However, the maximum forward current will also depend upon the ambient temperature in which the device is operating so the maximum forward current is usually quoted for two or more ambient temperature values such as 25oC or 70oC.
Then there are three main parameters that must be considered when either selecting or replacing a signal diode and these are:
  • The Reverse Voltage Rating
  • The Forward Current Rating
  • The Forward Power Dissipation Rating

Signal Diode Arrays

When space is limited, or matching pairs of switching signal diodes are required, diode arrays can be very useful. They generally consist of low capacitance high speed silicon diodes such as the 1N4148 connected together in multiple diode packages called an array for use in switching and clamping in digital circuits. They are encased in single inline packages (SIP) containing 4 or more diodes connected internally to give either an individual isolated array, common cathode, (CC), or a common anode, (CA) configuration as shown.

Signal Diode Arrays

Signal Diode Array
Signal diode arrays can also be used in digital and computer circuits to protect high speed data lines or other input/output parallel ports against electrostatic discharge, (ESD) and voltage transients. By connecting two diodes in series across the supply rails with the data line connected to their junction as shown, any unwanted transients are quickly dissipated and as the signal diodes are available in 8-fold arrays they can protect eight data lines in a single package.
Signal Diode Protection
CPU Data Line Protection
Signal diode arrays can also be used to connect together diodes in either series or parallel combinations to form voltage regulator or voltage reducing type circuits or even to produce a known fixed reference voltage.
We know that the forward volt drop across a silicon diode is about 0.7v and by connecting together a number of diodes in series the total voltage drop will be the sum of the individual voltage drops of each diode.
However, when signal diodes are connected together in series, the current will be the same for each diode so the maximum forward current must not be exceeded.

Connecting Signal Diodes in Series

Another application for the small signal diode is to create a regulated voltage supply. Diodes are connected together in series to provide a constant DC voltage across the diode combination. The output voltage across the diodes remains constant in spite of changes in the load current drawn from the series combination or changes in the DC power supply voltage that feeds them. Consider the circuit below.

Signal Diodes in Series

Signal Diodes in Series

As the forward voltage drop across a silicon diode is almost constant at about 0.7v, while the current through it varies by relatively large amounts, a forward-biased signal diode can make a simple voltage regulating circuit. The individual voltage drops across each diode are subtracted from the supply voltage to leave a certain voltage potential across the load resistor, and in our simple example above this is given as 10v - (3 x 0.7v) = 7.9v. This is because each diode has a junction resistance relating to the small signal current flowing through it and the three signal diodes in series will have three times the value of this resistance, along with the load resistance R, forms a voltage divider across the supply.
By adding more diodes in series a greater voltage reduction will occur. Also series connected diodes can be placed in parallel with the load resistor to act as a voltage regulating circuit. Here the voltage applied to the load resistor will be 3 x 0.7v = 2.1v. We can of course produce the same constant voltage source using a single Zener Diode. Resistor, RD is used to prevent excessive current flowing through the diodes if the load is removed.

Freewheel Diodes

Signal diodes can also be used in a variety of clamping, protection and wave shaping circuits with the most common form of clamping diode circuit being one which uses a diode connected in parallel with a coil or inductive load to prevent damage to the delicate switching circuit by suppressing the voltage spikes and/or transients that are generated when the load is suddenly turned "OFF". This type of diode is generally known as a "Free-wheeling Diode" or Freewheel diode as it is more commonly called.
The Freewheel diode is used to protect solid state switches such as power transistors and MOSFET's from damage by reverse battery protection as well as protection from highly inductive loads such as relay coils or motors, and an example of its connection is shown below.

Use of the Freewheel Diode

Freewheel Diode
Modern fast switching, power semiconductor devices require fast switching diodes such as free wheeling diodes to protect them form inductive loads such as motor coils or relay windings. Every time the switching device above is turned "ON", the freewheel diode changes from a conducting state to a blocking state as it becomes reversed biased.
However, when the device rapidly turns "OFF", the diode becomes forward biased and the collapse of the energy stored in the coil causes a current to flow through the freewheel diode. Without the protection of the freewheel diode high di/dt currents would occur causing a high voltage spike or transient to flow around the circuit possibly damaging the switching device.
Previously, the operating speed of the semiconductor switching device, either transistor, MOSFET, IGBT or digital has been impaired by the addition of a freewheel diode across the inductive load with Schottky and Zener diodes being used instead in some applications. But during the past few years however, freewheel diodes had regained importance due mainly to their improved reverse-recovery characteristics and the use of super fast semiconductor materials capable at operating at high switching frequencies.
Other types of specialized diodes not included here are Photo-Diodes, PIN Diodes, Tunnel Diodes and Schottky Barrier Diodes. By adding more PN junctions to the basic two layer diode structure other types of semiconductor devices can be made. For example a three layer semiconductor device becomes aTransistor, a four layer semiconductor device becomes a Thyristor or Silicon Controlled Rectifier and five layer devices known as Triacs are also available.
In the next tutorial about diodes, we will look at the large signal diode sometimes called the Power Diode. Power diodes are silicon diodes designed for use in high-voltage, high-current mains rectification circuits.

The Power Diode

In the previous tutorials we saw that a semiconductor signal diode will only conduct current in one direction from its anode to its cathode (forward direction), but not in the reverse direction acting a bit like an electrical one way valve. A widely used application of this feature is in the conversion of an alternating voltage (AC) into a continuous voltage (DC). In other words, Rectification.
But small signal diodes can also be used as rectifiers in low-power, low current (less than 1-amp) rectifiers or applications, but were larger forward bias currents or higher reverse bias blocking voltages are involved the PN junction of a small signal diode would eventually overheat and melt so larger more robust Power Diodes are used instead.
The power semiconductor diode, known simply as the Power Diode, has a much larger PN junction area compared to its smaller signal diode cousin, resulting in a high forward current capability of up to several hundred amps (KA) and a reverse blocking voltage of up to several thousand volts (KV). Since the power diode has a large PN junction, it is not suitable for high frequency applications above 1MHz, but special and expensive high frequency, high current diodes are available. For high frequency rectifier applications Schottky Diodes are generally used because of their short reverse recovery time and low voltage drop in their forward bias condition.
Power diodes provide uncontrolled rectification of power and are used in applications such as battery charging and DC power supplies as well as AC rectifiers and inverters. Due to their high current and voltage characteristics they can also be used as freewheeling diodes and snubber networks. Power diodes are designed to have a forward "ON" resistance of fractions of an Ohm while their reverse blocking resistance is in the mega-Ohms range. Some of the larger value power diodes are designed to be "stud mounted" onto heatsinks reducing their thermal resistance to between 0.1 to 1oC/Watt.
If an alternating voltage is applied across a power diode, during the positive half cycle the diode will conduct passing current and during the negative half cycle the diode will not conduct blocking the flow of current. Then conduction through the power diode only occurs during the positive half cycle and is therefore unidirectional i.e. DC as shown.

Power Diode Rectifier

Power Diode Rectifier

Power diodes can be used individually as above or connected together to produce a variety of rectifier circuits such as "Half-Wave", "Full-Wave" or as "Bridge Rectifiers". Each type of rectifier circuit can be classed as either uncontrolled, half-controlled or fully controlled were an uncontrolled rectifier uses only power diodes, a fully controlled rectifier uses thyristors (SCRs) and a half controlled rectifier is a mixture of both diodes and thyristors.
The most commonly used individual power diode for basic electronics applications is the general purpose 1N400x Series Glass Passivated type rectifying diode with standard ratings of continuous forward rectified current of 1.0 amp and reverse blocking voltage ratings from 50v for the 1N4001 up to 1000v for the 1N4007, with the small 1N4007GP being the most popular for general purpose mains voltage rectification.

Half Wave Rectification

A rectifier is a circuit which converts the Alternating Current (AC) input power into a Direct Current (DC) output power. The input power supply may be either a single-phase or a multi-phase supply with the simplest of all the rectifier circuits being that of the Half Wave Rectifier. The power diode in a half wave rectifier circuit passes just one half of each complete sine wave of the AC supply in order to convert it into a DC supply. Then this type of circuit is called a "half-wave" rectifier because it passes only half of the incoming AC power supply as shown below.

Half Wave Rectifier Circuit

Half Wave Rectifier Circuit

During each "positive" half cycle of the AC sine wave, the diode is forward biased as the anode is positive with respect to the cathode resulting in current flowing through the diode. Since the DC load is resistive (resistor, R), the current flowing in the load resistor is therefore proportional to the voltage (Ohm´s Law), and the voltage across the load resistor will therefore be the same as the supply voltage, Vs (minus Vf), that is the "DC" voltage across the load is sinusoidal for the first half cycle only so Vout = Vs.
During each "negative" half cycle of the AC sine wave, the diode is reverse biased as the anode is negative with respect to the cathode therefore, No current flows through the diode or circuit. Then in the negative half cycle of the supply, no current flows in the load resistor as no voltage appears across it soVout = 0.
The current on the DC side of the circuit flows in one direction only making the circuit Unidirectional and the value of the DC voltage VDC across the load resistor is calculated as follows.
Vdc Equation
Where Vmax is the maximum voltage value of the AC supply, and VS is the r.m.s. value of the supply.

Example No1.

Calculate the current, ( IDC ) flowing through a 100Ω resistor connected to a 240v single phase half-wave rectifier as shown above. Also calculate the power consumed by the load.
Power Diode Current Equation
During the rectification process the resultant output DC voltage and current are therefore both "ON" and "OFF" during every cycle. As the voltage across the load resistor is only present during the positive half of the cycle (50% of the input waveform), this results in a low average DC value being supplied to the load. The variation of the rectified output waveform between this ON and OFF condition produces a waveform which has large amounts of "ripple" which is an undesirable feature. The resultant DC ripple has a frequency that is equal to that of the AC supply frequency.
Very often when rectifying an alternating voltage we wish to produce a "steady" and continuous DC voltage free from any voltage variations or ripple. One way of doing this is to connect a large valueCapacitor across the output voltage terminals in parallel with the load resistor as shown below. This type of capacitor is known commonly as a "Reservoir" or Smoothing Capacitor.

Half-wave Rectifier with Smoothing Capacitor

Diode Rectifier with Smoothing Capacitor
When rectification is used to provide a direct voltage power supply from an alternating source, the amount of ripple can be further reduced by using larger value capacitors but there are limits both on cost and size. For a given capacitor value, a greater load current (smaller load resistor) will discharge the capacitor more quickly ( RC Time Constant ) and so increases the ripple obtained. Then for single phase, half-wave rectifier circuits it is not very practical to try and reduce the ripple voltage by capacitor smoothing alone, it is more practical to use "Full-wave Rectification" instead.
In practice, the half-wave rectifier is used most often in low-power applications because of their major disadvantages being. The output amplitude is less than the input amplitude, there is no output during the negative half cycle so half the power is wasted and the output is pulsed DC resulting in excessive ripple. To overcome these disadvantages a number of Power Diodes are connected together to produce a Full Wave Rectifier as discussed in the next tutorial.

The Full Wave Rectifier

In the previous Power Diodes tutorial we discussed ways of reducing the ripple or voltage variations on a direct DC voltage by connecting capacitors across the load resistance. While this method may be suitable for low power applications it is unsuitable to applications which need a "steady and smooth" DC supply voltage. One method to improve on this is to use every half-cycle of the input voltage instead of every other half-cycle. The circuit which allows us to do this is called a Full Wave Rectifier.
Like the half wave circuit, a full wave rectifier circuit produces an output voltage or current which is purely DC or has some specified DC component. Full wave rectifiers have some fundamental advantages over their half wave rectifier counterparts. The average (DC) output voltage is higher than for half wave, the output of the full wave rectifier has much less ripple than that of the half wave rectifier producing a smoother output waveform.
In a Full Wave Rectifier circuit two diodes are now used, one for each half of the cycle. A transformer is used whose secondary winding is split equally into two halves with a common centre tapped connection, (C). This configuration results in each diode conducting in turn when its anode terminal is positive with respect to the transformer centre point C producing an output during both half-cycles, twice that for the half wave rectifier so it is 100% efficient as shown below.

Full Wave Rectifier Circuit

Full Wave Rectifier

The full wave rectifier circuit consists of two power diodes connected to a single load resistance (RL) with each diode taking it in turn to supply current to the load. When point A of the transformer is positive with respect to point C, diode D1 conducts in the forward direction as indicated by the arrows. When point B is positive (in the negative half of the cycle) with respect to point C, diode D2 conducts in the forward direction and the current flowing through resistor R is in the same direction for both half-cycles. As the output voltage across the resistor R is the phasor sum of the two waveforms combined, this type of full wave rectifier circuit is also known as a "bi-phase" circuit.
As the spaces between each half-wave developed by each diode is now being filled in by the other diode the average DC output voltage across the load resistor is now double that of the single half-wave rectifier circuit and is about  0.637Vmax  of the peak voltage, assuming no losses.
Full Wave DC Voltage
Where: VMAX is the maximum peak value in one half of the secondary winding and VRMS is the rms value.
The peak voltage of the output waveform is the same as before for the half-wave rectifier provided each half of the transformer windings have the same rms voltage value. To obtain a different DC voltage output different transformer ratios can be used. The main disadvantage of this type of full wave rectifier circuit is that a larger transformer for a given power output is required with two separate but identical secondary windings making this type of full wave rectifying circuit costly compared to the "Full Wave Bridge Rectifier" circuit equivalent.

The Full Wave Bridge Rectifier

Another type of circuit that produces the same output waveform as the full wave rectifier circuit above, is that of the Full Wave Bridge Rectifier. This type of single phase rectifier uses four individual rectifying diodes connected in a closed loop "bridge" configuration to produce the desired output. The main advantage of this bridge circuit is that it does not require a special centre tapped transformer, thereby reducing its size and cost. The single secondary winding is connected to one side of the diode bridge network and the load to the other side as shown below.

The Diode Bridge Rectifier

Diode Bridge Rectifier
The four diodes labelled D1 to D4 are arranged in "series pairs" with only two diodes conducting current during each half cycle. During the positive half cycle of the supply, diodes D1 and D2 conduct in series while diodes D3 and D4 are reverse biased and the current flows through the load as shown below.

The Positive Half-cycle

Positive Half-cycle Bridge
During the negative half cycle of the supply, diodes D3 and D4 conduct in series, but diodes D1 and D2switch "OFF" as they are now reverse biased. The current flowing through the load is the same direction as before.

The Negative Half-cycle

Negative Half-cycle Bridge

As the current flowing through the load is unidirectional, so the voltage developed across the load is also unidirectional the same as for the previous two diode full-wave rectifier, therefore the average DC voltage across the load is 0.637Vmax. However in reality, during each half cycle the current flows through two diodes instead of just one so the amplitude of the output voltage is two voltage drops ( 2 x 0.7 = 1.4V ) less than the input VMAX amplitude. The ripple frequency is now twice the supply frequency (e.g. 100Hz for a 50Hz supply)
Bridge Rectifier
Typical Bridge Rectifier
Although we can use four individual power diodes to make a full wave bridge rectifier, pre-made bridge rectifier components are available "off-the-shelf" in a range of different voltage and current sizes that can be soldered directly into a PCB circuit board or be connected by spade connectors.
The image to the right shows a typical single phase bridge rectifier with one corner cut off. This cut-off corner indicates that the terminal nearest to the corner is the positive or +ve output terminal or lead with the opposite (diagonal) lead being the negative or -ve output lead. The other two connecting leads are for the input alternating voltage from a transformer secondary winding.

The Smoothing Capacitor

We saw in the previous section that the single phase half-wave rectifier produces an output wave every half cycle and that it was not practical to use this type of circuit to produce a steady DC supply. The full-wave bridge rectifier however, gives us a greater mean DC value (0.637 Vmax) with less superimposed ripple while the output waveform is twice that of the frequency of the input supply frequency. We can therefore increase its average DC output level even higher by connecting a suitable smoothing capacitor across the output of the bridge circuit as shown below.

Full-wave Rectifier with Smoothing Capacitor

Bridge Rectifier Smoothing Circuit

The smoothing capacitor converts the full-wave rippled output of the rectifier into a smooth DC output voltage. Generally for DC power supply circuits the smoothing capacitor is an Aluminium Electrolytic type that has a capacitance value of 100uF or more with repeated DC voltage pulses from the rectifier charging up the capacitor to peak voltage. However, their are two important parameters to consider when choosing a suitable smoothing capacitor and these are its Working Voltage, which must be higher than the no-load output value of the rectifier and its Capacitance Value, which determines the amount of ripple that will appear superimposed on top of the DC voltage.
Too low a capacitance value and the capacitor has little effect on the output waveform. But if the smoothing capacitor is sufficiently large enough (parallel capacitors can be used) and the load current is not too large, the output voltage will be almost as smooth as pure DC. As a general rule of thumb, we are looking to have a ripple voltage of less than 100mV peak to peak.
The maximum ripple voltage present for a Full Wave Rectifier circuit is not only determined by the value of the smoothing capacitor but by the frequency and load current, and is calculated as:

Bridge Rectifier Ripple Voltage

Full wave Rectifier Ripple Voltage
Where: I is the DC load current in amps, ƒ is the frequency of the ripple or twice the input frequency in Hertz, and C is the capacitance in Farads.
The main advantages of a full-wave bridge rectifier is that it has a smaller AC ripple value for a given load and a smaller reservoir or smoothing capacitor than an equivalent half-wave rectifier. Therefore, the fundamental frequency of the ripple voltage is twice that of the AC supply frequency (100Hz) where for the half-wave rectifier it is exactly equal to the supply frequency (50Hz).
The amount of ripple voltage that is superimposed on top of the DC supply voltage by the diodes can be virtually eliminated by adding a much improved π-filter (pi-filter) to the output terminals of the bridge rectifier. This type of low-pass filter consists of two smoothing capacitors, usually of the same value and a choke or inductance across them to introduce a high impedance path to the alternating ripple component.
Another more practical and cheaper alternative is to use an off the shelf 3-terminal voltage regulator IC, such as a LM78xx (where "xx" stands for the output voltage rating) for a positive output voltage or its inverse equivalent the LM79xx for a negative output voltage which can reduce the ripple by more than 70dB (Datasheet) while delivering a constant output current of over 1 amp.
In the next tutorial about diodes, we will look at the Zener Diode which takes advantage of its reverse breakdown voltage characteristic to produce a constant and fixed output voltage across itself.

The Zener Diode


In the previous Signal Diode tutorial, we saw that a "reverse biased" diode blocks current in the reverse direction, but will suffer from premature breakdown or damage if the reverse voltage applied across it is too high. However, the Zener Diode or "Breakdown Diode" as they are sometimes called, are basically the same as the standard PN junction diode but are specially designed to have a low pre-determined Reverse Breakdown Voltage that takes advantage of this high reverse voltage. The zener diode is the simplest types of voltage regulator and the point at which a zener diode breaks down or conducts is called the "Zener Voltage" (Vz).
The Zener diode is like a general-purpose signal diode consisting of a silicon PN junction. When biased in the forward direction it behaves just like a normal signal diode passing the rated current, but as soon as a reverse voltage applied across the zener diode exceeds the rated voltage of the device, the diodes breakdown voltage VB is reached at which point a process called Avalanche Breakdown occurs in the semiconductor depletion layer and a current starts to flow through the diode to limit this increase in voltage.
The current now flowing through the zener diode increases dramatically to the maximum circuit value (which is usually limited by a series resistor) and once achived this reverse saturation current remains fairly constant over a wide range of applied voltages. This breakdown voltage point, VB is called the "zener voltage" for zener diodes and can range from less than one volt to hundreds of volts.
The point at which the zener voltage triggers the current to flow through the diode can be very accurately controlled (to less than 1% tolerance) in the doping stage of the diodes semiconductor construction giving the diode a specific zener breakdown voltage, (Vz) for example, 4.3V or 7.5V. This zener breakdown voltage on the I-V curve is almost a vertical straight line.

Zener Diode I-V Characteristics

Zener Diode I-V Characteristics

The Zener Diode is used in its "reverse bias" or reverse breakdown mode, i.e. the diodes anode connects to the negative supply. From the I-V characteristics curve above, we can see that the zener diode has a region in its reverse bias characteristics of almost a constant negative voltage regardless of the value of the current flowing through the diode and remains nearly constant even with large changes in current as long as the zener diodes current remains between the breakdown current IZ(min)and the maximum current rating IZ(max).
This ability to control itself can be used to great effect to regulate or stabilise a voltage source against supply or load variations. The fact that the voltage across the diode in the breakdown region is almost constant turns out to be an important application of the zener diode as a voltage regulator. The function of a regulator is to provide a constant output voltage to a load connected in parallel with it in spite of the ripples in the supply voltage or the variation in the load current and the zener diode will continue to regulate the voltage until the diodes current falls below the minimum IZ(min) value in the reverse breakdown region.

The Zener Diode Regulator

Zener Diodes can be used to produce a stabilised voltage output with low ripple under varying load current conditions. By passing a small current through the diode from a voltage source, via a suitable current limiting resistor (RS), the zener diode will conduct sufficient current to maintain a voltage drop ofVout. We remember from the previous tutorials that the DC output voltage from the half or full-wave rectifiers contains ripple superimposed onto the DC voltage and that as the load value changes so to does the average output voltage. By connecting a simple zener stabiliser circuit as shown below across the output of the rectifier, a more stable output voltage can be produced.

Zener Diode Regulator

Zener Diode Regulator

The resistor, RS is connected in series with the zener diode to limit the current flow through the diode with the voltage source, VS being connected across the combination. The stabilised output voltage Voutis taken from across the zener diode. The zener diode is connected with its cathode terminal connected to the positive rail of the DC supply so it is reverse biased and will be operating in its breakdown condition. Resistor RS is selected so to limit the maximum current flowing in the circuit.
With no load connected to the circuit, the load current will be zero, ( IL = 0 ), and all the circuit current passes through the zener diode which inturn dissipates its maximum power. Also a small value of the series resistor RS will result in a greater diode current when the load resistance RL is connected and large as this will increase the power dissipation requirement of the diode so care must be taken when selecting the appropriate value of series resistance so that the zeners maximum power rating is not exceeded under this no-load or high-impedance condition.
The load is connected in parallel with the zener diode, so the voltage across RL is always the same as the zener voltage, ( VR = VZ ). There is a minimum zener current for which the stabilization of the voltage is effective and the zener current must stay above this value operating under load within its breakdown region at all times. The upper limit of current is of course dependant upon the power rating of the device. The supply voltage VS must be greater than VZ.
One small problem with zener diode stabiliser circuits is that the diode can sometimes generate electrical noise on top of the DC supply as it tries to stabilise the voltage. Normally this is not a problem for most applications but the addition of a large value decoupling capacitor across the zeners output may be required to give additional smoothing.
Then to summarise a little. A zener diode is always operated in its reverse biased condition. A voltage regulator circuit can be designed using a zener diode to maintain a constant DC output voltage across the load in spite of variations in the input voltage or changes in the load current. The zener voltage regulator consists of a current limiting resistor RS connected in series with the input voltage VS with the zener diode connected in parallel with the load RL in this reverse biased condition. The stabilized output voltage is always selected to be the same as the breakdown voltage VZ of the diode.

Example No1

5.0V stabilised power supply is required to be produced from a 12V DC power supply input source. The maximum power rating PZ of the zener diode is 2W. Using the zener regulator circuit above calculate:

a) The maximum current flowing through the zener diode.

Maximum Current Calculation

b) The minimum value of the series resistor, RS

Series Resistor Calculation

c) The load current IL if a load resistor of 1kΩ is connected across the Zener diode.

Load Current Calculation

d) The total supply current IS at full load.

Supply Current Calculation

Zener Diode Voltages

As well as producing a single stabilised voltage output, zener diodes can also be connected together in series along with normal silicon signal diodes to produce a variety of different reference voltage output values as shown below.

Zener Diodes Connected in Series

Zener Diode Reference Voltages
The values of the individual Zener diodes can be chosen to suit the application while the silicon diode will always drop about 0.6 - 0.7V in the forward bias condition. The supply voltage, Vin must of course be higher than the largest output reference voltage and in our example above this is 19v.
A typical zener diode for general electronic circuits is the 500mW, BZX55 series or the larger 1.3W,BZX85 series were the zener voltage is given as, for example, C7V5 for a 7.5V diode giving a diode reference number of BZX55C7V5. The 500mW series of zener diodes are available from about 2.4 up to about 100 volts and typically have the same sequence of values as used for the 5% (E24) resistor series with the individual voltage ratings for these small but very useful diodes are given in the table below.

Zener Diode Standard Voltages

  BZX55 Zener Diode Power Rating 500mW
2.4V2.7V3.0V3.3V3.6V3.9V4.3V4.7V
5.1V5.6V6.2V6.8V7.5V8.2V9.1V10V
11V12V13V15V16V18V20V22V
24V27V30V33V36V39V43V47V
  BZX85 Zener Diode Power Rating 1.3W
3.3V3.6V3.9V4.3V4.7V5.1V5.66.2V
6.8V7.5V8.2V9.1V10V11V12V13V
15V16V18V20V22V24V27V30V
33V36V39V43V47V51V56V62V

Zener Diode Clipping Circuits

Thus far we have looked at how a zener diode can be used to regulate a constant DC source but what if the input signal was not steady state DC but an alternating AC waveform how would the zener diode react to a constantly changing signal.
Diode clipping and clamping circuits are circuits that are used to shape or modify an input AC waveform (or any sinusoid) producing a differently shape output waveform depending on the circuit arrangement. Diode clipper circuits are also called limiters because they limit or clip-off the positive (or negative) part of an input AC signal. As zener clipper circuits limit or cut-off part of the waveform across them, they are mainly used for circuit protection or in waveform shaping circuits.
For example, if we wanted to clip an output waveform at +7.5V, we would use a 7.5V zener diode. If the output waveform tries to exceed the 7.5V limit, the zener diode will "clip-off" the excess voltage from the input producing a waveform with a flat top still keeping the output constant at +7.5V. Note that in the forward bias condition a zener diode is still a diode and when the AC waveform output goes negative below -0.7V, the zener diode turns "ON" like any normal silicon diode would and clips the output at -0.7V as shown below.

Square Wave Signal

Square Wave Signal
The back to back connected zener diodes can be used as an AC regulator producing what is jokingly called a "poor man's square wave generator". Using this arrangement we can clip the waveform between a positive value of +8.2V and a negative value of -8.2V for a 7.5V zener diode. If we wanted to clip an output waveform between different minimum and maximum values for example, +8V and -6V, use would simply use two differently rated zener diodes.
Note that the output will actually clip the AC waveform between +8.7V and -6.7V due to the addition of the forward biasing diode voltage, which adds another 0.7V voltage drop to it. This type of clipper configuration is fairly common for protecting an electronic circuit from over voltage. The two zeners are generally placed across the power supply input terminals and during normal operation, one of the zener diodes is "OFF" and the diodes have little or no affect. However, if the input voltage waveform exceeds its limit, then the zeners turn "ON" and clip the input to protect the circuit.
In the next tutorial about diodes, we will look at using the forward biased PN junction of a diode to produce light. We know from the previous tutorials that when charge carriers move across the junction, electrons combine with holes and energy is lost in the form of heat, but also some of this energy is dissipated as photons but we can not see them. If we place a translucent lens around the junction, visible light will be produced and the diode becomes a light source. This effect produces another type of diode known commonly as the Light Emitting Diode which takes advantage of this light producing characteristic to emit light (photons) in a variety of colours and wavelengths.

Light Emitting Diodes

Light Emitting Diodes or LED´s, are among the most widely used of all the different types of semiconductor diodes available today. They are the most visible type of diode, that emit a fairly narrow bandwidth of either visible light at different coloured wavelengths, invisible infra-red light for remote controls or laser type light when a forward current is passed through them. A "Light Emitting Diode" orLED as it is more commonly called, is basically just a specialised type of PN junction diode, made from a very thin layer of fairly heavily doped semiconductor material.
When the diode is forward biased, electrons from the semiconductors conduction band recombine with holes from the valence band releasing sufficient energy to produce photons which emit a monochromatic (single colour) of light. Because of this thin layer a reasonable number of these photons can leave the junction and radiate away producing a coloured light output. Then we can say that when operated in a forward biased direction Light Emitting Diodes are semiconductor devices that convert electrical energy into light energy.
light emitting diode construction
LED Construction
The construction of a light emitting diode is very different from that of a normal signal diode. The PN junction of an LED is surrounded by a transparent, hard plastic epoxy resign hemispherical shaped shell or body which protects the LED from both vibration and shock.
Surprisingly, an LED junction does not actually emit that much light so the epoxy resin body is constructed in such a way that the photons of light emitted by the junction are reflected away from the surrounding substrate base to which the diode is attached and are focused upwards through the domed top of the LED, which itself acts like a lens concentrating the amount of light. This is why the emitted light appears to be brightest at the top of the LED.
However, not all LEDs are made with a hemispherical shaped dome for their epoxy shell. Some indication LEDs have a rectangular or cylindrical shaped construction that has a flat surface on top or their body is shaped into a bar or arrow. Also, nearly all LEDs have their cathode, ( K ) terminal identified by either a notch or flat spot on the body, or by one of the leads being shorter than the other, ( the Anode, A ).
Unlike normal incandescent lamps and bulbs which generate large amounts of heat when illuminated, the light emitting diode produces a "cold" generation of light which leads to high efficiencies than the normal "light bulb" because most of the generated energy radiates away within the visible spectrum. Because LEDs are solid-state devices, they can be extremely small and durable and provide much longer lamp life than normal light sources.

Light Emitting Diode Colours

So how does a light emitting diode get its colour. Unlike normal signal diodes which are made for detection or power rectification, and which are made from either Germanium or Silicon semiconductor materials, Light Emitting Diodes are made from exotic semiconductor compounds such as Gallium Arsenide (GaAs), Gallium Phosphide (GaP), Gallium Arsenide Phosphide (GaAsP), Silicon Carbide (SiC) or Gallium Indium Nitride (GaInN) all mixed together at different ratios to produce a distinct wavelength of colour.
Different LED compounds emit light in specific regions of the visible light spectrum and therefore produce different intensity levels. The exact choice of the semiconductor material used will determine the overall wavelength of the photon light emissions and therefore the resulting colour of the light emitted.
Typical LED Characteristics
Semiconductor
Material
WavelengthColourVF @ 20mA
GaAs850-940nmInfra-Red1.2v
GaAsP630-660nmRed1.8v
GaAsP605-620nmAmber2.0v
GaAsP:N585-595nmYellow2.2v
AlGaP550-570nmGreen3.5v
SiC430-505nmBlue3.6v
GaInN450nmWhite4.0v
Thus, the actual colour of a light emitting diode is determined by the wavelength of the light emitted, which inturn is determined by the actual semiconductor compound used in forming the PN junction during manufacture.
Therefore the colour of the light emitted by an LED is NOT determined by the colouring of the LED's plastic body although these are slightly coloured to both enhance the light output and to indicate its colour when its not being illuminated by an electrical supply.
Light emitting diodes are available in a wide range of colours with the most common being RED,AMBER YELLOW  and GREEN and are thus widely used as visual indicators and as moving light displays.
Recently developed blue and white coloured LEDs are also available but these tend to be much more expensive than the normal standard colours due to the production costs of mixing together two or more complementary colours at an exact ratio within the semiconductor compound and also by injecting nitrogen atoms into the crystal structure during the doping process.
From the table above we can see that the main P-type dopant used in the manufacture of Light Emitting Diodes is Gallium (Ga, atomic number 31) and that the main N-type dopant used is Arsenic (As, atomic number 31) giving the resulting compound of Gallium Arsenide (GaAs) crystal structure. The problem with using Gallium Arsenide on its own as the semiconductor compound is that it radiates large amounts of low brightness infra-red radiation (850nm-940nm approx.) from its junction when a forward current is flowing through it.
The infra-red light produced is ok for television remote controls but not very useful if we want to use the LED as an indicating light. But by adding Phosphorus (P, atomic number 15), as a third dopant the overall wavelength of the emitted radiation is reduced to below 680nm giving visible red light to the human eye. Further refinements in the doping process of the PN junction have resulted in a range of colours spanning the spectrum of visible light as we have seen above as well as infra-red and ultra-violet wavelengths.
By mixing together a variety of semiconductor, metal and gas compounds the following list of LEDs can be produced.
  • • Gallium Arsenide (GaAs) - infra-red
  • • Gallium Arsenide Phosphide (GaAsP) - red to infra-red, orange
  • • Aluminium Gallium Arsenide Phosphide (AlGaAsP) - high-brightness red, orange-red, orange, and yellow
  • • Gallium Phosphide (GaP) - red, yellow and green
  • • Aluminium Gallium Phosphide (AlGaP) - green
  • • Gallium Nitride (GaN) - green, emerald green
  • • Gallium Indium Nitride (GaInN) - near ultraviolet, bluish-green and blue
  • • Silicon Carbide (SiC) - blue as a substrate
  • • Zinc Selenide (ZnSe) - blue
  • • Aluminium Gallium Nitride (AlGaN) - ultraviolet
Like conventional PN junction diodes, LEDs are current-dependent devices with its forward voltage dropVF, depending on the semiconductor compound (its light colour) and on the forward biased LED current. The point where conduction begins and light is produced is about 1.2V for a standard red LED to about 3.6V for a blue LED.
The exact voltage drop will of course depend on the manufacturer because of the different dopant materials and wavelengths used. The voltage drop across the LED at a particular current value, for example 20mA, will also depend on the initial conduction VF point. As an LED is effectively a diode, its forward current to voltage characteristics curves can be plotted for each diode colour as shown below.

Light Emitting Diodes I-V Characteristics.

Light Emitting Diode
Light Emitting Diode (LED) Schematic symbol and its I-V Characteristics Curves showing the different colours available.
Before a light emitting diode can "emit" any form of light it needs a current to flow through it, as it is a current dependant device with their light output intensity being directly proportional to the forward current flowing through the LED. As the LED is to be connected in a forward bias condition across a power supply it should be current limited using a series resistor to protect it from excessive current flow. Never connect an LED directly to a battery or power supply as it will be destroyed almost instantly because too much current will pass through and burn it out.
From the table above we can see that each LED has its own forward voltage drop across the PN junction and this parameter which is determined by the semiconductor material used, is the forward voltage drop for a specified amount of forward conduction current, typically for a forward current of 20mA. In most cases LEDs are operated from a low voltage DC supply, with a series resistor, RS used to limit the forward current to a safe value from say 5mA for a simple LED indicator to 30mA or more where a high brightness light output is needed.

LED Series Resistance.

The series resistor value RS is calculated by simply using Ohm´s Law, by knowing the required forward current IF of the LED, the supply voltage VS across the combination and the expected forward voltage drop of the LED, VF at the required current level, the current limiting resistor is calculated as:

LED Series Resistor Circuit

Light Emitting Diode Circuit

Example No1

An amber coloured LED with a forward volt drop of 2 volts is to be connected to a 5.0v stabilised DC power supply. Using the circuit above calculate the value of the series resistor required to limit the forward current to less than 10mA. Also calculate the current flowing through the diode if a 100Ω series resistor is used instead of the calculated first.
1). series resistor value at 10mA.
LED Series Resistor
2). with a 100Ω series resistor.
LED Current
We remember from the Resistors tutorials, that resistors come in standard preferred values. Our first calculation above shows to limit the current flowing through the LED to 10mA exactly, we would require a300Ω resistor. In the E12 series of resistors there is no 300Ω resistor so we would need to choose the next highest value, which is 330Ω. A quick re-calculation shows the new forward current value is now 9.1mA, and this is ok.

LED Driver Circuits

Now that we know what is an LED, we need some way of controlling it by switching it "ON" and "OFF". The output stages of both TTL and CMOS logic gates can both source and sink useful amounts of current therefore can be used to drive an LED. Normal integrated circuits (ICs) have an output drive current of up to 50mA in the sink mode configuration, but have an internally limited output current of about 30mA in the source mode configuration. Either way the LED current must be limited to a safe value using a series resistor as we have already seen. Below are some examples of driving light emitting diodes using inverting ICs but the idea is the same for any type of integrated circuit output whether combinational or sequential.

IC Driver Circuit

LED Driver Circuit using ICs
If more than one LED requires driving at the same time, such as in large LED arrays, or the load current is to high for the integrated circuit or we may just want to use discrete components instead of ICs, then an alternative way of driving the LEDs using either bipolar NPN or PNP transistors as switches is given below. Again as before, a series resistor, RS is required to limit the LED current.

Transistor Driver Circuit

LED Driver Circuit using Transistors

The brightness of a light emitting diode cannot be controlled by simply varying the current flowing through it. Allowing more current to flow through the LED will make it glow brighter but will also cause it to dissipate more heat. LEDs are designed to produce a set amount of light operating at a specific forward current ranging from about 10 to 20mA.
In situations were power savings are important, less current may be possible. However, reducing the current to below say 5mA may dim its light output too much or even turn the LED "OFF" completely. A much better way to control the brightness of LEDs is to use a control process known as "Pulse Width Modulation" or PWM, in which the LED is repeatedly turned "ON" and "OFF" at varying frequencies depending upon the required light intensity.

LED Light Intensity using PWM

PWM Light Intensity Control
When higher light outputs are required, a pulse width modulated current with a fairly short duty cycle ("ON-OFF" Ratio) allows the diode current and therefore the output light intensity to be increased significantly during the actual pulses, while still keeping the LEDs "average current level" and power dissipation within safe limits. This "ON-OFF" flashing condition does not affect what is seen as the human eyes fills in the gaps between the "ON" and "OFF" light pulses, providing the pulse frequency is high enough, making it appear as a continuous light output. So pulses at a frequency of 100Hz or more actually appear brighter to the eye than a continuous light of the same average intensity.

Multi-coloured Light Emitting Diode

LEDs are available in a wide range of shapes, colours and various sizes with different light output intensities available, with the most common (and cheapest to produce) being the standard 5mm Red Gallium Arsenide Phosphide (GaAsP) LED. LED's are also available in various "packages" arranged to produce both letters and numbers with the most common being that of the "seven segment display" arrangement.
Nowadays, full colour flat screen LED displays are available with a large number of dedicated ICs available for driving the displays directly. Most light emitting diodes produce just a single output of coloured light however, multi-coloured LEDs are now available that can produce a range of different colours from within a single device. Most of these are actually two or three LEDs fabricated within a single package.

Bicolour Light Emitting Diodes

A bicolour light emitting diode has two LEDs chips connected together in "inverse parallel" (one forwards, one backwards) combined in one single package. Bicolour LEDs can produce any one of three colours for example, a red colour is emitted when the device is connected with current flowing in one direction and a green colour is emitted when it is biased in the other direction.
This type of bi-directional arrangement is useful for giving polarity indication, for example, the correct connection of batteries or power supplies etc. Also, a bi-directional current produces both colours mixed together as the two LEDs would take it in turn to illuminate if the device was connected (via a suitable resistor) to a low voltage, low frequency AC supply.

A Bicolour LED

Muli-Colour LEDs
LED
Selected
Terminal AAC
+-
LED 1ONOFFON
LED 2OFFONON
ColourGreenRedYellow


Tricolour Light Emitting Diodes

The most popular type of tricolour LED comprises of a single Red and a Green LED combined in one package with their cathode terminals connected together producing a three terminal device. They are called tricolour LEDs because they can give out a single red or a green colour by turning "ON" only one LED at a time. They can also generate additional shades of colours (the third colour) such as Orange or Yellow by turning "ON" the two LEDs in different ratios of forward current as shown in the table thereby generating 4 different colours from just two diode junctions.

A Multi or Tricolour LED

Muli-Colour LEDs
Output
Colour
RedOrangeYellowGreen
LED 1
Current
05mA9.5mA15mA
LED 2
Current
10mA6.5mA3.5mA0


LED Displays

As well as individual colour or multi-colour LEDs, several light emitting diodes can be combined together within a single package to produce displays such as bargraphs, strips, arrays and seven segment displays. A seven segment LED display provides a very convenient way when decoded properly of displaying information or digital data in the form of numbers, letters or even alpha-numerical characters and as their name suggests, they consist of seven individual LEDs (the segments), within one single display package.
In order to produce the required numbers or characters from 0 to 9 and A to F respectively, on the display the correct combination of LED segments need to be illuminated. A standard seven segment LED display generally has eight input connections, one for each LED segment and one that acts as a common terminal or connection for all the internal segments.
  • The Common Cathode Display (CCD) - In the common cathode display, all the cathode connections of the LEDs are joined together and the individual segments are illuminated by application of a HIGH, logic "1" signal.
  •  
  • The Common Anode Display (CAD) - In the common anode display, all the anode connections of the LEDs are joined together and the individual segments are illuminated by connecting the terminals to a LOW, logic "0" signal.

A Typical Seven Segment LED Display

seven segment display

Opto-coupler


Finally, another useful application of light emitting diodes is Opto-coupling. An opto-coupler or opto-isolator as it is also called, is a single electronic device that consists of a light emitting diode combined with either a photo-diode, photo-transistor or photo-triac to provide an optical signal path between an input connection and an output connection while maintaining electrical isolation between two circuits.
An opto-isolator consists of a light proof plastic body that has a typical breakdown voltages between the input (photo-diode) and the output (photo-transistor) circuit of up to 5000 volts. This electrical isolation is especially useful where the signal from a low voltage circuit such as a battery powered circuit, computer or microcontroller, is required to operate or control another external circuit operating at a potentially dangerous mains voltage.

Photo-diode and Photo-transistor Opto-couplers

Opto-isolator
The two components used in an opto-isolator, an optical transmitter such as an infra-red emitting Gallium Arsenide LED and an optical receiver such as a photo-transistor are closely optically coupled and use light to send signals and/or information between its input and output. This allows information to be transferred between circuits without an electrical connection or common ground potential. Opto-isolators are digital or switching devices, so they transfer either "ON-OFF" control signals or digital data. Analogue signals can be transferred by means of frequency or pulse-width modulation.