brock

Saturday, October 27, 2012

Wireless Equipment Control Using AT89C51


Here is a microcontroller based wireless equipment controller that can switch on or switch off up to four devices at a desired time interval set by the user in the transmitter. The devices can be controlled remotely from a distance of up to 30 metres from the transmitter. In the transmitter, an  LCD module is used to show the device numbers and preset control time for the devices (00 to 99 seconds). Concepts of wireless RF communication and automation with AT89C51 microcontroller are used here. 

The system is small, simple, cost-effective and good for wireless control of home appliances or industrial instrumentation.

Block diagram

The system comprises a transmitter and a receiver as described below.





Four pushbutton switches (S1 through S4) are used as inputs to select the devices and set the time-out in the transmitter section. These are designated as up, down, enter and run keys, respectively. The time-out data is transferred over the RF wireless link to the receiver section.


The 8-bit AT89C51 microcontroller is the main controlling part of the transmitter section. It is connected to the LCD module, input switches and encoder IC (HT12E). The device control program is stored in the memory of the microcontroller to control the devices as per the time-out settings  done through input switches S1 through S4.


A two-line, 16-character LCD module shows the status of the main program that is running inside the microcontroller.

The HT12E is an 18- pin DIP package encoder IC that encodes 4-bit data and sends it to TRX-434 RF transmitter module.
The TRX-434 RF transmitter module uses a digital modulation technique called amplitude-shift keying (ASK) or on-off keying. In this technique, whenever logic ‘1’ is to be sent, it is modulated with carrier signal (434MHz). This modulated signal is then transmitted through the antenna. The waveforms in Fig. 2 depict the ASK concept. 

fig2
Receiver section. Fig.3 shows the block diagram of the receiver section.

The 12V DC supply, used along with a 5V regulator, can be provided by a 12V battery or power adaptor.

The RX-434 radio receiver module receives the ASK signal from TRX-434. The HT12D decoder demodulates the received address and data bits. IC CD4519 is a quadruple two-input multiplexer that selects the appropriate data bits to control the devices.
fig3
The ULN 2003 relay driver consists of seven npn Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching the inductive loads. The collector-current rating of a single Darlington pair is 500 mA.
Circuit description
Transmitter circuit. Fig.4 shows the transmitter circuit. The microcontroller reads the input data from switches S1 through S4 at its port-2 pins 21 through 24 and displays it on the LCD. Port 3 provides read data to the encoder IC HT12E at pins 10 through 13. The microcontroller is programmed to control input and output data.

When the push button switches (S1 through S4) are open, logic ‘0’ is constantly fed to the respective port pins of the microcontroller. When any of the buttons is pressed, logic ‘1’ is fed to the respective port pin of the microcontroller.
fig4
The device control program stored in the memory of the microcontroller activates and executes as per the functions defined in the program for respective input switches.

Data inputs AD8 through AD11 (pins 10 through 13) of HT12E are connected to the microcontroller. Pins 1 through 8 (A0 through A7) of the IC are address inputs. Shorting them address pins using switches to either Vcc or Gnd enables different address selections for data transmission. Here we have connected them to 5V. Since address pins are connected to 5V, the address is set to 255d (in decimal). If you were to connect all the address pins to ground, the address would be 000d. Thus there are 256 possible addresses available. So you can set up switches to control one or more of the encoder address pins.

Pin 14 is a transmit-enable (TE) input pin. The encoder will send data only when pin 14 is connected to ground. Whenever a button is pressed, logic ‘0’ is sent to this pin through the microcontroller, thus activating it and enabling transmission.

Pin 17 is the data-out (Dout) pin that sends a serial stream of pulses containing the address and data. It is connected to the data input pin of the TRX RF module.

The time-out control is set using input keys S1 through S4 to turn on/off the devices at predetermined time. The default time for all the devices is ‘00’ seconds. So using ‘up’ key you can increment time by one second, and using ‘down’ key you can decrement time by one second down. At the same time, the LCD module shows the current status of increments and decrements.

When the time-out for a device is set, press ‘ent’ key so that the program control transfers to the next device for time-out settings. In the same way, the remaining three time-out settings must be done before pressing ‘run’ key. When ‘run’ key is pressed, it executes the device control program subroutine in the microcontroller and the program automatically collects the time-out information entered by the user and sends the processed data to encoder IC HT12E. The encoder IC sends the data to Din (pin 2) of the RF transmitter module. The data is transmitted by the TRX-434 module to the receiver section through the antenna.

Receiver circuit. Fig. 5 shows the receiver circuit. The RF receiver (RX- 434) module can receive the signal transmitted by the transmitter from a distance of up to 9 metres (30 feet). The range can be increased up to 30 metres using a good antenna. 
fig5
Dout pin of RX-434 RF module is connected to Din pin of decoder IC HT12D (IC4). Din pin of IC4 receives address and data bits serially from the RF module. Decoder IC4 separates data and address from the received information. It accepts data only if the received address matches with the address assigned to encoder IC1 (HT12E). We have used ‘1111’ as the permanent address for communication. Pins 1 through 8 of IC4 are address pins and therefore 256 possible addresses are available. The address on the encoder and decoder ICs must match for the data to be valid.
The HT12D decoder receives serial addresses and data from the encoder that are transmitted by a carrier signal over RF medium. The decoder compares the serial input data three times. continuously with its local addresses. If no error or unmatched codes are found, the input data codes are decoded and transferred to the output pins. VT pin (valid transmission) goes high to indicate a valid transmission. The HT12D provides four latch-type data pins whose data remains unchanged until new data is received. 

Data pins D8 through D11 (pins 10 through 13) of the decoder send 4-bit data to CD4519 multiplexer IC5.
fig6
CD4519 multiplexer. This IC provides four multiplexing circuits with common select inputs (SA and SB); each circuit contains two inputs (An, Bn) and one output (On). It may be used ton select 4-bit information from one of the two sources.

There are eight input lines (A0 through A3 and B0 through B3), of which four (A0 through A3) are permanently connected to Vcc through resistor R19, while the rest four (B0 through B3) are connected to the data output lines of the decoder (IC4).

The select inputs can be connected to either Vcc or VT pin (pin 17) for latch or momentary mode-selection section. Jumper switch (Js) is used to select between latch and momentary operation. When latch mode is selected, data present at the output pins is latched, i.e., they remain the same and the respective relay energises until the next change is made in the mode selection. When momentary mode is selected, data present at the output pins is available as long as VT  pin remains active-high. As soon as VTpin becomes active-low, the respective relay de-energises.

The latched output data from multiplexer CD4519 is fed to relay driver IC ULN2003, to control up to four devices through the relays (RL1 through RL4). VT pin is connected to LED4 through IC6 to indicate the status of VT signal when it is active-high.

Software program


The software flowchart programmed in the microcontroller of the transmitter section is shown in Fig. 6. It is written in Assembly language and compiled using ASM51 software to generate the hex code. The hex program can be burnt into the AT89C51 microcontroller by using any standard programmer available in the market. We have used TopView programmer from Frontline Electronics to program the microcontroller.

The software program is designed to accept the input from the user as well as control the devices. It identifies the key pressed and displays the key code on the LCD module.

In the program, the LCD module is initialised first. As soon as the time-out is set, all the four devices turn on initially, then a particular device turns off at preset time. In this project, the timeout range is 00 to 99 seconds, which can be easily modified to extend the time duration in the delay subroutine of Assembly code.

Port 0 is configured as output port and interfaced with the RF module through encoder IC1. Port 1 is used for LCD interface and port 2 is used for the input from push-to-on switches.

Circuit operation

When the system is switched on, the startup message “press any key” appears on the LCD screen. When any key is pressed by the user, the LCD displays the message “to set time out press ent!”. Pressing ‘ent’ key displays the following messages on the LCD with a cursor blinking near the first device ‘D1_T’:

D1_T= D2_T=
D3_T= D4_T=

Use ‘up’ and ‘down’ keys to set the time for controlling the devices. The set time for each device on the LCD screen looks like this:

D1_T=10 D2_T=20
D3_T=30 D4_T=40

Now press ‘ent’ key followed by ‘run’ key. A device control subroutine executes and sends the data to the RF module, which transmits the data through ANT antenna. You can set maximum of 99 seconds as the control time for the device. If you set it to 00, a particular device is turned on for infinite time.

Thursday, October 25, 2012

Morse Code Tutorial

Morse Code was designed by Samuel Morse and Alfred Vail. It uses short and long pulses - tones or lights - to represent letters and numbers. Probably the most well known Morse Code Message is the one made up of three short pulses, then three long pulses, then three short pulses again. Or "dot dot dot, dash dash dash, dot dot dot." This message means "S O S" (S = "..." and O is "---"), the distress signal.

Officially, the short and long pulses are called "dits" and "dahs", but we like to call them "dots" and "dashes" anyway.

Samuel Morse and Alfred Vail also developed a telegraph machine, which is what is used to send Morse Code messages. A telegraph operator sits at the machine and taps out long and short taps to represent the letters of the message he's sending. I imagine it must take a lot of concentration and a very good memory to keep track of all those dots and dashes!

The very first telegraph message ever sent was a short one, but very interesting. The message was: "What God Hath Wrought". You may want to try putting that message in the encoder to see what it looks like!


A .-         B -...       C -.-.       D -.. 
E .          F ..-.       G --.        H .... 
I ..           J .---       K -.-        L .-.. 
M --         N -.         O ---        P .--. 
Q --.-       R .-.        S ...        T - 
U ..-        V ...-       W .--        X -..- 
Y -.--       Z --..       0 -----      1 .---- 
2 ..---      3 ...--      4 ....-      5 ..... 
6 -....      7 --...      8 ---..      9 ----. 

9V Converter Using Two AA Cells

Normally, 9V PP3 batteries last less than a couple of hours if used continuously. These cannot be used if the voltage is below 7.8V. Say goodbye to these expensive 9V batteries having a short life. Two AA-size alkaline cells in conjunction with this DC-DC converter give 9V at a low current and last much longer.


The power supply is designed using a boost converter with fixed ‘on’ time and variable ‘off’ time. The variable ‘off’ time regulates power to the load. The converter consists of transistor T2, inductor L1 and capacitor C2. The conductance of transistor T1 controls ‘off’ time of the oscillator in conjunction with capacitor C2. IC TL431 (IC1) monitors the voltage across capacitor C4. When the voltage exceeds 2.5V at the reference pin (Ref) of IC1, the opto-coupler conducts more and reduces the conduction of transistor T1.

The frequency of oscillations mainly depends on the time constant (R-C) of feedback capacitor C3 and the input stage impedance (R1 plus VR1). Adjust preset VR1 to tweak the circuit for efficiency. The converter works with a single cell also. In that case, keep the output current-drain minimal.

We have measured maximum output of 8.7V at 28mA current. Above this current, the output becomes zero.